Skip to main content
Log in

Erythroid cell growth and differentiation in vitro in the simulated microgravity environment of the nasa rotating wall vessel bioreactor

  • Special-Nasa/Johnson Space Center Workshop
  • NASA Biotechnology: Cell Science in Microgravity
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Prolonged exposure of humans and experimental animals to the altered gravitational conditions of space flight has adverse effects on the lymphoid and erythroid hematopoietic systems. Although some information is available regarding the cellular and molecular changes in lymphocytes exposed to microgravity, little is known about the erythroid cellular changes that may underlie the reduction in erythropoiesis and resultant anemia. We now report a reduction in erythroid growth and a profound inhibition of erythropoietin (Epo)-induced differentiation in a ground-based simulated microgravity model system. Rauscher murine erythroleukemia cells were grown either in tissue culture vessels at 1×g or in the simulated microgravity environment of the NASA-designed rotating wall vessel (RWV) bioreactor. Logarithmic growth was observed under both conditions; however, the doubling time in simulated microgravity was only one-half of that seen at 1×g. No difference in apoptosis was detected. Induction with Epo at the initiation of the culture resulted in differentiation of approximately 25% of the cells at 1×g, consistent with our previous observations. In contrast, induction with Epo at the initiation of simulated microgravity resulted in only one-half of this degree of differentiation. Significantly, the growth of cells in simulated microgravity for 24 h prior to Epo induction inhibited the differentiation almost completely. The results suggest that the NASA RWV bioreactor may serve as a suitable ground-based microgravity simulator to model the cellular and molecular changes in erythroid cells observed in true microgravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akins, R. E.; Schroedl, N. A.; Gonda, S. R., et al. Neonatal rat heart cells cultured in simulated microgravity. In Vitro Cell. Dev. Biol. 33A:337–343; 1997.

    Google Scholar 

  • Alfrey, C. P.; Rice, L.; Udden, M. M., et al. Neocytolysis: physiological down-regulator of red-cell mass. Lancet 349:1389–1390; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Alfrey, C. P.; Udden, M. M.; Huntoon, C. L., et al. Destruction of newly released red blood cells in space flight. Med. Sci. Sports Exerc. 28:S42-S44; 1996a.

    PubMed  CAS  Google Scholar 

  • Alfrey, C. P.; Udden, M. M.; Leach-Huntoon, C., et al. Control of red blood cell mass in spaceflight. J. Appl. Physiol. 81:98–104; 1996b.

    PubMed  CAS  Google Scholar 

  • Allebban, Z.; Gibson, L. A.; Lange, R. D., et al. Effects of spaceflight on rat erythroid parameters. J. Appl. Physiol. 81:117–122; 1996.

    PubMed  CAS  Google Scholar 

  • Baker, T. L.; Goodwin, T. J. Three-dimensional culture of bovine chondrocytes in rotating-wall vessels. In Vitro Cell. Dev. Biol. 33A:358–365; 1997.

    Google Scholar 

  • Chern, Y. J.; O'Hara, C.; Sytkowski, A. J. Induction of hemoglobin synthesis by down regulation of MYB protein with an antisense oligodeoxynucleotide. Blood 78:991–996; 1991a.

    PubMed  CAS  Google Scholar 

  • Chern, Y.; Spangler, R.; Choi, H. S., et al. Erythropoietin activates the receptor in both Rauscher and Friend murine erythroleukemia cells. J. Biol. Chem. 266:2009–2012; 1991b.

    PubMed  CAS  Google Scholar 

  • Chern, Y.; Yonekura, S.; Sytkowski, A. J. Potentiation of the erythropoietin response by dimethyl sulfoxide priming of erythroleukemia cells: evidence for interaction of two signaling pathways. Blood 76:2204–2209; 1990.

    PubMed  CAS  Google Scholar 

  • Chopra, V.; Dinh, T. V.; Hannigan, E. V. Three-dimensional endothelial-tumor epithelial cell interactions in human cervical cancers. In Vitro Cell. Dev. Biol. 33A:432–442; 1997.

    Google Scholar 

  • Cogoli, A. Gravity sensing in animal cells. Physiologist 28:S47-S50; 1985.

    PubMed  CAS  Google Scholar 

  • Cogoli, A.; Gmunder, F. K. Gravity effects on single cells: techniques, findings, and theory. Adv. Space Biol. Med. 1:183–248; 1991.

    PubMed  CAS  Google Scholar 

  • Cogoli, A.; Tschopp, A.; Fuchs-Bislin, P. Cell sensitivity to gravity. Science 225;228–230; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, D.; Pellis, N. R. Suppressed PHA activation of T lymphocytes in simulated microgravity is restored by direct activation of protein kinase C. J. Leukoc. Biol. 63:550–562; 1998.

    PubMed  CAS  Google Scholar 

  • Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75:519–560; 1995.

    PubMed  CAS  Google Scholar 

  • Davies, P. F.; Barbee, K. A.; Volin, M. V. et al. Spatial relationships in early signaling events of flow-mediated endothelial mechanotransduction. Annu. Rev. Physiol. 59:527–549; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Davis, T. A.; Wiesmann, W.; Kidwell, W., et al. Effect of space flight on human stem cell hematopoiesis: suppression of erythropoiesis and myelopoiesis. J. Leukoe. Biol. 60:69–76; 1996.

    CAS  Google Scholar 

  • de Both, N. J.; Vermey, M.; van't Hull, E., et al. A new erythroid cell line induced by Rauscher murine leukaemia virus. Nature 272:620–628; 1978.

    Article  Google Scholar 

  • de Groot, R. P.; Rijken, P. J.; Boonstra, J., et al. Epidermal growth factor-induced expression of c-fos is influenced by altered gravity conditions. Aviat. Space Environ. Med. 62:37–40; 1991a.

    PubMed  Google Scholar 

  • de Groot, R. P.; Rijken, P. J.; den Hertog, J., et al. Microgravity decreases c-fos induction and serum response element activity. J. Cell Sci. 97:33–38; 1990.

    PubMed  Google Scholar 

  • de Groot, R. P.; Rijken, P. J.; den Hertog, J., et al. Nuclear responses to protein kinase C signal transduction are sensitive to gravity changes. Exp. Cell Res. 197:87–90; 1991b.

    Article  PubMed  Google Scholar 

  • de Laat, S. W.; de Groot, R. P.; den Hertog, J., et al. Epidermal growth factor induced signal transduction in A431 cells is influenced by altered gravity conditions. Physiologist 35:S19-S22; 1992.

    PubMed  Google Scholar 

  • Duke, P. J.; Danne, E. L.; Montufar-Solis, D. Studies of chondrogenesis in rotating systems. J. Cell. Biochem. 51:274–282; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, C. D. Effect of dehydration on erythropoiesis in mice: relevance to the “anemia” of space flight. Aviat. Space Environ. Med. 49:990–993; 1978.

    PubMed  CAS  Google Scholar 

  • Dunn, C. D. Effect of food or water restriction on erythropoiesis in mice: relevance to “anemia” of space flight. Am. J. Physiol. 238:R301-R305; 1980.

    PubMed  CAS  Google Scholar 

  • Dunn, C. D.; Gibson, L. A. The effect of chamber restraint (with or without lower body positive pressure) on hematopoiesis (particularly erythropoiesis) in squirrel monkeys (Saimiri sciureus). J. Med. Primatol. 15:81–96; 1986.

    PubMed  CAS  Google Scholar 

  • Dunn, C. D.; Johnson, P. C.; Lange, R. D. Regulation of hematopoiesis in rats exposed to antiorthostatic hypokinetic/hypodynamia: II. Mechanisms of the “anemia”. Aviat. Space Environ. Med. 57:36–44; 1986.

    PubMed  CAS  Google Scholar 

  • Dunn, C. D.; Johnson, P. C.; Lange, R. D., et al. Regulation of hematopoiesis in rats exposed to antiorthostatic, hypokinetic/hypodynamia: I. Model description. Aviat. Space Environ. Med. 56:419–426; 1985.

    PubMed  CAS  Google Scholar 

  • Durnova, G. N. Sravnitel'noe issledovanie limfoidnykh organov krys, nakhodivshikhsia vo vremia kosmicheskogo poleta v usloviiakh nevesomosti i iskusstvennoi sily tiazhesti. Arkh. Anat. Gistol. Embriol. 75:41–47; 1978.

    PubMed  CAS  Google Scholar 

  • Goodwin, T. J.; Prewett, T. L.; Spaulding, G. F., et al. Three-dimensional culture of a mixed mullerian tumor of the ovary: expression of in vivo characteristics. In Vitro Cell. Dev. Biol. 33A:366–374; 1997.

    Google Scholar 

  • Goodwin, T. J.; Prewett, T. L.; Wolf, D. A., et al. Reduced shear stress: a major component in the ability of mammalian tissues to form three-dimensional assemblies in simulated microgravity. J. Cell. Biochem. 51:301–311; 1993a.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin, T. J.; Schroeder, W. F.; Wolf, D. A., et al. Rotating-wall vessel coculture of small intestine as a prelude to tissue modeling: aspects of simulated microgravity. Proc. Soc. Exp. Med. 202:181–192; 1993b.

    CAS  Google Scholar 

  • Granet, C.; Laroche, N.; Vico, L., et al. Rotating-wall vessels, promising bioreactors for osteoblastic cell culture: comparison with other 3D conditions. Med. Biol. Eng. Comput. 36:513–519; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Gudi, S. R.; Clark, C. B.; Frangos, J. A. Fluid flow rapidly activates G proteins in human endothelial cells. Involvement of G proteins in mechanochemical signal transduction. Circ. Res. 79:834–839; 1996.

    PubMed  CAS  Google Scholar 

  • Gudi, S.; Nolan, J. P.; Frangos, J. A. Modulation of GTPase activity of G proteins by fluid shear stress and phospholipid composition. Proc. Natl. Acad. Sci. USA 95:2515–2519; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Jessup, J. M.; Battle, P.; Waller, H., et al. Reactive nitrogen and oxygen radicals formed during hepatic ischemia-reperfusion kill weakly metastatic colorectal cancer cells. Cancer Res. 59:1825–1829; 1999.

    PubMed  CAS  Google Scholar 

  • Jessup, J. M.; Brown, D.; Fitzgerald, W., et al. Induction of carcinoembryonic antigen expression in a three-dimensional culture system. In Vitro Cell. Dev. Biol. 33A:352–357; 1997.

    Google Scholar 

  • Jessup, J. M.; Goodwin, T. J.; Spaulding, G. Prospects for use of microgravity-based bioreactors to study three-dimensional host-tumor interactions in human neoplasia. J. Cell. Biochem. 51:290–300; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Lange, R. D.; Andrews, R. B.; Gibson, L. A., et al. Hematological measurements in rats flown on Spacelab shuttle, SL-3. Am. J. Physiol.. 252:R216-R221; 1987.

    PubMed  CAS  Google Scholar 

  • Lelkes, P. I.; Galvan, D. L.; Hayman, G. T., et al. Simulated microgravity conditions enhance differentiation of cultured PC12 cells towards the neuroendocrine phenotype. In Vitro Cell. Dev. Biol. 34A:316–325; 1998.

    Google Scholar 

  • Lewis, M. L.; Reynolds, J. L.; Cubano, L. A., et al. Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). FASEB J. 12:1007–1018; 1998.

    PubMed  CAS  Google Scholar 

  • Li, Y.; Davis, K. L.; Sytkowski, A. J.: Protein kinase C-epsilon is necessary for erythropoietin's up-regulation of c-myc and for factor-dependent DNA synthesis. Evidence for discrete signals for growth and differentiation. J. Biol. Chem. 271:27,025–27,030; 1996.

    CAS  Google Scholar 

  • Long, J. P.; Pierson, S.; Hughes, J. H. Rhinovirus replication in HeLa cells cultured under conditions of simulated microgravity. Aviat. Space Environ. Med. 69:851–856; 1998.

    PubMed  CAS  Google Scholar 

  • Lorenzi, G.; Fuchs-Bislin, P.; Cogoli, A. Effects of hypergravity on “whole-blood” cultures of human lymphocytes. Aviat. Space Environ. Med. 57:1131–1135; 1986.

    PubMed  CAS  Google Scholar 

  • Margolis, L. B.; Fitzgerald, W.; Glushakova, S., et al. Lymphocyte trafficking and HIV infection of human lymphoid tissue in a rotating wall vessel bioreactor. AIDS Res. Hum. Retroviruses 13:1411–1420; 1997.

    PubMed  CAS  Google Scholar 

  • Margolis, L.; Hatfill, S.; Chuaqui, R., et al. Long term organ culture of human prostate tissue in a NASA-designed rotating wall bioreactor. J. Urol. 161:290–297; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Molnar, G.; Schroedl, N. A.; Gonda, S. R., et al. Skeletal muscle satellite cells cultured in simulated microgravity. In Vitro Cell. Dev. Biol. 33A:386–391; 1997.

    Google Scholar 

  • Patel, H. R.; Choi, H. S.; Sytkowski, A. J. Activation of two discrete signaling pathways by erythropoietin. J. Biol. Chem. 267:21,300–21,302; 1992.

    CAS  Google Scholar 

  • Rifkind, R. A.; Marks, P. A.; Bank, A., et al. Regulation of differentiation in normal and transformed erythroid cells. In Vitro 14:155–161; 1978.

    PubMed  CAS  Google Scholar 

  • Rijken, P. J.; Boonstra, J.; Verkleij, A. J., et al. Effects of gravity on the cellular response to epidermal growth factor. Adv. Space Biol. Med. 4:159–188; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Rijken, P. J.; de Groot, R. P.; Briegleb, W., et al. Epidermal growth factor-induced cell rounding is sensitive to simulated microgravity. Aviat. Space Environ. Med. 62:32–36; 1991.

    PubMed  CAS  Google Scholar 

  • Rijken, P. J.; de Groot, R. P.; Kruijer, W., et al. Epidermal growth factor (EGF)-induced signal transduction in A431 cells is sensitive to gravity. In: Guyenne, T. D., ed. Microgravity as a tool in developmental biology, Noordwijk, The Netherlands: ESA Publ. Div. 8; 1989:21–28.

    Google Scholar 

  • Rijken, P. J.; de Groot, R. P.; Kruijer, W., et al. Altered gravity conditions affect early EGF-induced signal transduction in human epidermal A431 cells. ASGSB Bull. 5:77–82; 1992a.

    PubMed  CAS  Google Scholar 

  • Rijken, P. J.; de Groot, R. P.; Kruijer, W., et al. Identification of specific gravity sensitive signal transduction pathways in human A431 carcinoma cells. Adv. Space Res. 12:145–152; 1992b.

    Article  PubMed  CAS  Google Scholar 

  • Rijken, P. J.; de Groot, R. P., van Belzen, N., et al. Inhibition of EGF-induced signal transduction by microgravity is independent of EGF receptor redistribution in the plasma membrane of human A431 cells. Exp. Cell Res. 204:373–377; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt, D. A.; Hatton, J. P.; Emond, C., et al. The distribution of protein kinase C in human leukocytes is altered in microgravity. FASEB J. 10:1627–1634; 1996.

    PubMed  CAS  Google Scholar 

  • Spangler, R.; Bailey, S. C.; Sytkowski, A. J. Erythropoietin increases c-myc mRNA by a protein kinase C-dependent pathway. J. Biol. Chem. 266:681–684; 1991.

    PubMed  CAS  Google Scholar 

  • Spangler, R.; Sytkowski, A. J. c-myc is an erythropoietin early response gene in normal erythroid cells: evidence for a protein kinase C-mediated signal. Blood 79:52–57; 1992.

    PubMed  CAS  Google Scholar 

  • Sytkowski, A. J.; Salvado, A. J.; Smith, G. M., et al. Erythroid differentiation of clonal Rauscher erythroleukemia cells in response to erythropoietin or dimethyl sulfoxide. Science 210:74–76; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Talbot, J. M.; Fisher, K. D. Influence of space flight on red blood cells. Fed. Proc. 45:2285–2290; 1986.

    PubMed  CAS  Google Scholar 

  • Tavassoli, M. Anemia of spaceflight. Blood 60:1059–1067; 1982.

    PubMed  CAS  Google Scholar 

  • Tavassoli, M. Medical problems of space flight. Am. J. Med. 81:850–854; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Tokarev, N.; Andreeva, A. P. Mekhanizmy patogeneza tak nazyvaemoi anemii astronavtov. Gematol. Transfuziol. 39:17–21; 1994.

    PubMed  Google Scholar 

  • Tschopp, A.; Cogoli, A. Hypergravity promotes cell proliferation. Experientia 39:1323–1329; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Udden, M. M.; Driscoll, T. B.; Gibson, L. A., et al. Blood volume and erythropoiesis in the rat during spaceflight. Aviat. Space Environ. Med. 66:557–561; 1995a.

    PubMed  CAS  Google Scholar 

  • Udden, M. M.; Driscoll, T. B.; Pickett, M. H., et al. Decreased production of red blood cells in human subjects exposed to microgravity. J. Lab. Clin. Med. 125:442–449; 1995b.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur J. Sytkowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sytkowski, A.J., Davis, K.L. Erythroid cell growth and differentiation in vitro in the simulated microgravity environment of the nasa rotating wall vessel bioreactor. In Vitro Cell.Dev.Biol.-Animal 37, 79–83 (2001). https://doi.org/10.1290/1071-2690(2001)037<0079:ECGADI>2.0.CO;2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2001)037<0079:ECGADI>2.0.CO;2

Key words

Navigation